합성곱 신경망 CNN (Convolutional Neural Network)이미지와 같은 2차원 데이터를 효율적으로 분석하기 위해 개발된 신경망으로, 주로 합성곱 층, 풀링 층, 완전 연결 층으로 구성한다. 합성곱 층(Convolutional Layer)은 입력 이미지에 커널(필터)을 적용해 특징 맵을 생성한다. 커널은 이미지의 일부에서 패턴을 찾아내고 학습하는 역할을 한다. 풀링 층(Pooling Layer)은 특징 맵의 크기를 줄이고 핵심적인 특징을 추출한다. 주로 최대 풀링(Max Pooling)과 평균 풀링(Average Pooling)이 사용되며, 최대 풀링은 필터 내에서 가장 큰 값을 선택하여 중요한 정보를 강조하고, 평균 풀링은 필터 내에서 평균 값을 계산하여 정보 손실을 최소화하며 크기를 ..